Three-Dimensional Self-assembled Hairball-Like VS4 as High-Capacity Anodes for Sodium-Ion Batteries

Author:

Ding Shuangshuang,Zhou Bingxin,Chen Changmiao,Huang Zhao,Li Pengchao,Wang Shuangyin,Cao Guozhong,Zhang Ming

Abstract

AbstractSodium-ion batteries (SIBs) are considered to be attractive candidates for large-scale energy storage systems because of their rich earth abundance and consistent performance. However, there are still challenges in developing desirable anode materials that can accommodate rapid and stable insertion/extraction of Na+ and can exhibit excellent electrochemical performance. Herein, the self-assembled hairball-like VS4 as anodes of SIBs exhibits high discharge capacity (660 and 589 mAh g−1 at 1 and 3 A g−1, respectively) and excellent rate property (about 100% retention at 10 and 20 A g−1 after 1000 cycles) at room temperature. Moreover, the VS4 can also exhibit 591 mAh g−1 at 1 A g−1 after 600 cycles at 0 °C. An unlike traditional mechanism of VS4 for Na+ storage was proposed according to the dates of ex situ characterization, cyclic voltammetry, and electrochemical kinetic analysis. The capacities of the final stabilization stage are provided by the reactions of reversible transformation between Na2S and S, which were considered the reaction mechanisms of Na–S batteries. This work can provide a basis for the synthesis and application of sulfur-rich compounds in fields of batteries, semiconductor devices, and catalysts.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3