Coordination Effect-Promoted Durable Ni(OH)2 for Energy-Saving Hydrogen Evolution from Water/Methanol Co-Electrocatalysis

Author:

Fu Guodong,Kang Xiaomin,Zhang Yan,Yang Xiaoqiang,Wang Lei,Fu Xian-Zhu,Zhang Jiujun,Luo Jing-Li,Liu Jianwen

Abstract

AbstractElectrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions (OER). Small molecule oxidation reactions with lower working potentials, such as methanol oxidation reactions, are good alternatives to OER with faster kinetics. However, the typically employed Ni-based electrocatalysts have poor activity and stability. Herein, a novel three-dimensional (3D)-networking Mo-doped Ni(OH)2 with ultralow Ni–Ni coordination is synthesized, which exhibits a high MOR activity of 100 mA cm−2 at 1.39 V, delivering 28 mV dec−1 for the Tafel slope. Meanwhile, hydrogen evolution with value-added formate co-generation is boosted with a current density of more than 500 mA cm−2 at a cell voltage of 2.00 V for 50 h, showing excellent stability in an industrial alkaline concentration (6 M KOH). Mechanistic studies based on density functional theory and X-ray absorption spectroscopy showed that the improved performance is mainly attributed to the ultralow Ni–Ni coordination, 3D-networking structures and Mo dopants, which improve the catalytic activity, increase the active site density and strengthen the Ni(OH)2 3D-networking structures, respectively. This study paves a new way for designing electrocatalysts with enhanced activity and durability for industrial energy-saving hydrogen production.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3