Author:
Chen Tao,Liu Tong,Ding Tao,Pang Beibei,Wang Lan,Liu Xiaokang,Shen Xinyi,Wang Sicong,Wu Dan,Liu Dong,Cao Linlin,Luo Qiquan,Zhang Wei,Zhu Wenkun,Yao Tao
Abstract
AbstractSurface chemistry modification represents a promising strategy to tailor the adsorption and activation of reaction intermediates for enhancing activity. Herein, we designed a surface oxygen-injection strategy to tune the electronic structure of SnS2 nanosheets, which showed effectively enhanced electrocatalytic activity and selectivity of CO2 reduction to formate and syngas (CO and H2). The oxygen-injection SnS2 nanosheets exhibit a remarkable Faradaic efficiency of 91.6% for carbonaceous products with a current density of 24.1 mA cm−2 at −0.9 V vs RHE, including 83.2% for formate production and 16.5% for syngas with the CO/H2 ratio of 1:1. By operando X-ray absorption spectroscopy, we unravel the in situ surface oxygen doping into the matrix during reaction, thereby optimizing the Sn local electronic states. Operando synchrotron radiation infrared spectroscopy along with theoretical calculations further reveals that the surface oxygen doping facilitated the CO2 activation and enhanced the affinity for HCOO* species. This result demonstrates the potential strategy of surface oxygen injection for the rational design of advanced catalysts for CO2 electroreduction.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献