Author:
Liu Liming,Ma Yajie,Wang Yousheng,Ma Qiaoyan,Wang Zixuan,Yang Zigan,Wan Meixiu,Mahmoudi Tahmineh,Hahn Yoon-Bong,Mai Yaohua
Abstract
AbstractNiOx-based inverted perovskite solar cells (PSCs) have presented great potential toward low-cost, highly efficient and stable next-generation photovoltaics. However, the presence of energy-level mismatch and contact-interface defects between hole-selective contacts (HSCs) and perovskite-active layer (PAL) still limits device efficiency improvement. Here, we report a graded configuration based on both interface-cascaded structures and p-type molecule-doped composites with two-/three-dimensional formamidinium-based triple-halide perovskites. We find that the interface defects-induced non-radiative recombination presented at HSCs/PAL interfaces is remarkably suppressed because of efficient hole extraction and transport. Moreover, a strong chemical interaction, halogen bonding and coordination bonding are found in the molecule-doped perovskite composites, which significantly suppress the formation of halide vacancy and parasitic metallic lead. As a result, NiOx-based inverted PSCs present a power-conversion-efficiency over 23% with a high fill factor of 0.84 and open-circuit voltage of 1.162 V, which are comparable to the best reported around 1.56-electron volt bandgap perovskites. Furthermore, devices with encapsulation present high operational stability over 1,200 h during T90 lifetime measurement (the time as a function of PCE decreases to 90% of its initial value) under 1-sun illumination in ambient-air conditions.
Funder
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献