Hole-Transport Management Enables 23%-Efficient and Stable Inverted Perovskite Solar Cells with 84% Fill Factor

Author:

Liu Liming,Ma Yajie,Wang Yousheng,Ma Qiaoyan,Wang Zixuan,Yang Zigan,Wan Meixiu,Mahmoudi Tahmineh,Hahn Yoon-Bong,Mai Yaohua

Abstract

AbstractNiOx-based inverted perovskite solar cells (PSCs) have presented great potential toward low-cost, highly efficient and stable next-generation photovoltaics. However, the presence of energy-level mismatch and contact-interface defects between hole-selective contacts (HSCs) and perovskite-active layer (PAL) still limits device efficiency improvement. Here, we report a graded configuration based on both interface-cascaded structures and p-type molecule-doped composites with two-/three-dimensional formamidinium-based triple-halide perovskites. We find that the interface defects-induced non-radiative recombination presented at HSCs/PAL interfaces is remarkably suppressed because of efficient hole extraction and transport. Moreover, a strong chemical interaction, halogen bonding and coordination bonding are found in the molecule-doped perovskite composites, which significantly suppress the formation of halide vacancy and parasitic metallic lead. As a result, NiOx-based inverted PSCs present a power-conversion-efficiency over 23% with a high fill factor of 0.84 and open-circuit voltage of 1.162 V, which are comparable to the best reported around 1.56-electron volt bandgap perovskites. Furthermore, devices with encapsulation present high operational stability over 1,200 h during T90 lifetime measurement (the time as a function of PCE decreases to 90% of its initial value) under 1-sun illumination in ambient-air conditions.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3