Author:
Yang Jianming,Wang Hu,Zhang Yali,Zhang Hexin,Gu Junwei
Abstract
AbstractThe utilization of eco-friendly, lightweight, high-efficiency and high-absorbing electromagnetic interference (EMI) shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing. In this work, magnetic poly (butyleneadipate-co-terephthalate) (PBAT) microspheres were firstly synthesized via phase separation method, then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques. The merits of integrating ferroferric oxide-loaded multi-walled carbon nanotubes (Fe3O4@MWCNTs) nanoparticles, a microcellular framework, and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration. Microwaves are consumed throughout the process of “absorption-reflection-reabsorption” as much as possible, which greatly declines the secondary radiation pollution. The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%, and authenticated favorable stabilization after the tape adhesion experiment.
Funder
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献