A Selective-Response Hypersensitive Bio-Inspired Strain Sensor Enabled by Hysteresis Effect and Parallel Through-Slits Structures

Author:

Wang Qun,Yao Zhongwen,Zhang Changchao,Song Honglie,Ding Hanliang,Li Bo,Niu Shichao,Huang Xinguan,Chen Chuanhai,Han Zhiwu,Ren Luquan

Abstract

AbstractFlexible strain sensors are promising in sensing minuscule mechanical signals, and thereby widely used in various advanced fields. However, the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge. Herein, inspired by the hysteresis strategy of the scorpion slit receptor, a bio-inspired flexible strain sensor (BFSS) with parallel through-slit arrays is designed and fabricated. Specifically, BFSS consists of conductive monolayer graphene and viscoelastic styrene–isoprene–styrene block copolymer. Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials, BFSS can achieve both hypersensitivity and highly selective frequency response. Remarkably, the BFSS exhibits a high gage factor of 657.36, and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration. Moreover, the BFSS possesses a wide frequency detection range (103 Hz) and stable durability (1000 cycles). It can sense and recognize vibration signals with different characteristics, including the frequency, amplitude, and waveform. This work, which turns the hysteresis effect into a "treasure," can provide new design ideas for sensors for potential applications including human–computer interaction and health monitoring of mechanical equipment.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3