Author:
Zhou Xuesong,Qiu Lele,Fan Ruiqing,Zhang Jian,Hao Sue,Yang Yulin
Abstract
AbstractIn this paper, we present a facile approach to enhance the efficiency and stability of perovskite solar cells (PSCs) by incorporating perovskite with microporous indium-based metal–organic framework [In12O(OH)16(H2O)5(btc)6]n (In-BTC) nanocrystals and forming heterojunction light-harvesting layer. The interconnected micropores and terminal oxygen sites of In-BTC allow the preferential crystallization of perovskite inside the regular cavities, endowing the derived films with improved morphology/crystallinity and reduced grain boundaries/defects. Consequently, the In-BTC-modified PSC yields enhanced fill factor of 0.79 and power conversion efficiency (PCE) of 20.87%, surpassing the pristine device (0.76 and 19.52%, respectively). More importantly, over 80% of the original PCE is retained after 12 days of exposure to ambient environment (25 °C and relative humidity of ~ 65%) without encapsulation, while only about 35% is left to the pristine device.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献