Author:
Hassan Tufail,Iqbal Aamir,Yoo Byungkwon,Jo Jun Young,Cakmakci Nilufer,Naqvi Shabbir Madad,Kim Hyerim,Jung Sungmin,Hussain Noushad,Zafar Ujala,Cho Soo Yeong,Jeong Seunghwan,Kim Jaewoo,Oh Jung Min,Park Sangwoon,Jeong Youngjin,Koo Chong Min
Abstract
AbstractMultifunctional, flexible, and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications. This study presents a multifunctional Janus film integrating highly-crystalline Ti3C2Tx MXene and mechanically-robust carbon nanotube (CNT) film through strong hydrogen bonding. The hybrid film not only exhibits high electrical conductivity (4250 S cm−1), but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments, showing exceptional resistance to thermal shock. This hybrid Janus film of 15 μm thickness reveals remarkable multifunctionality, including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range, excellent infrared (IR) shielding capability with an average emissivity of 0.09 (a minimal value of 0.02), superior thermal camouflage performance over a wide temperature range (− 1 to 300 °C) achieving a notable reduction in the radiated temperature by 243 °C against a background temperature of 300 °C, and outstanding IR detection capability characterized by a 44% increase in resistance when exposed to 250 W IR radiation. This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献