Rational Design of Electrode–Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries

Author:

Su Zhen,Guo Haocheng,Zhao Chuan

Abstract

AbstractRechargeable proton batteries have been regarded as a promising technology for next-generation energy storage devices, due to the smallest size, lightest weight, ultrafast diffusion kinetics and negligible cost of proton as charge carriers. Nevertheless, a proton battery possessing both high energy and power density is yet achieved. In addition, poor cycling stability is another major challenge making the lifespan of proton batteries unsatisfactory. These issues have motivated extensive research into electrode materials. Nonetheless, the design of electrode–electrolyte interphase and electrolytes is underdeveloped for solving the challenges. In this review, we summarize the development of interphase and electrolytes for proton batteries and elaborate on their importance in enhancing the energy density, power density and battery lifespan. The fundamental understanding of interphase is reviewed with respect to the desolvation process, interfacial reaction kinetics, solvent-electrode interactions, and analysis techniques. We categorize the currently used electrolytes according to their physicochemical properties and analyze their electrochemical potential window, solvent (e.g., water) activities, ionic conductivity, thermal stability, and safety. Finally, we offer our views on the challenges and opportunities toward the future research for both interphase and electrolytes for achieving high-performance proton batteries for energy storage.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3