Polarizable Additive with Intermediate Chelation Strength for Stable Aqueous Zinc-Ion Batteries

Author:

Xia Yuting,Tong Rongao,Zhang Jingxi,Xu Mingjie,Shao Gang,Wang Hailong,Dong Yanhao,Wang Chang-An

Abstract

AbstractAqueous zinc-ion batteries are promising due to inherent safety, low cost, low toxicity, and high volumetric capacity. However, issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life. Here, we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction, overpotential growth, and dendrite formation. Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose. It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation. Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm−2. Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6% capacity retention after 500 cycles at 1 A g−1. Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+ diffusion and deposition, highlyreversible Zn electrodes can be achieved as verified by the experimental results. Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3