In Situ Coupling Strategy for Anchoring Monodisperse Co9S8 Nanoparticles on S and N Dual-Doped Graphene as a Bifunctional Electrocatalyst for Rechargeable Zn–Air Battery

Author:

Shao Qi,Liu Jiaqi,Wu Qiong,Li Qiang,Wang Heng-guo,Li Yanhui,Duan Qian

Abstract

Abstract An in situ coupling strategy to prepare Co9S8/S and N dual-doped graphene composite (Co9S8/NSG) has been proposed. The key point of this strategy is the function-oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co9S8 on the graphene in situ, but also the heteroatom-doped agent to generate S and N dual-doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The obtained electrocatalyst exhibits better activity parameter (ΔE = 0.82 V) and smaller Tafel slope (47.7 mV dec−1 for ORR and 69.2 mV dec−1 for OER) than commercially available Pt/C and RuO2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co9S8/NSG displays low charge–discharge voltage gap and outstanding long-term cycle stability over 138 h compared to Pt/C–RuO2. To further broaden its application scope, a homemade all-solid-state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function-oriented design of N4-metallomacrocycle derivatives might open new avenues to strategic construction of high-performance and long-life multifunctional electrocatalysts for wider electrochemical energy applications.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3