Multiphase Interfacial Regulation Based on Hierarchical Porous Molybdenum Selenide to Build Anticorrosive and Multiband Tailorable Absorbers

Author:

Zhao Tianbao,Jia Zirui,Liu Jinkun,Zhang Yan,Wu Guanglei,Yin Pengfei

Abstract

AbstractElectromagnetic wave (EMW) absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control. And in order to cope with the complex electromagnetic environment, the design of multifunctional and multiband high efficiency EMW absorbers remains a tremendous challenge. In this work, we designed a three-dimensional porous structure via the salt melt synthesis strategy to optimize the impedance matching of the absorber. Also, through interfacial engineering, a molybdenum carbide transition layer was introduced between the molybdenum selenide nanoparticles and the three-dimensional porous carbon matrix to improve the absorption behavior of the absorber. The analysis indicates that the number and components of the heterogeneous interfaces have a significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction loss introduced by interfacial engineering. Wherein, the prepared MoSe2/MoC/PNC composites showed excellent EMW absorption performance in C, X, and Ku bands, especially exhibiting a reflection loss of − 59.09 dB and an effective absorption bandwidth of 6.96 GHz at 1.9 mm. The coordination between structure and components endows the absorber with strong absorption, broad bandwidth, thin thickness, and multi-frequency absorption characteristics. Remarkably, it can effectively reinforce the marine anticorrosion property of the epoxy resin coating on Q235 steel substrate. This study contributes to a deeper understanding of the relationship between interfacial engineering and the performance of EMW absorbers, and provides a reference for the design of multifunctional, multiband EMW absorption materials.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3