Author:
Zhang Zheng,Gou Jingren,Cui Kaixuan,Zhang Xin,Yao Yujian,Wang Suqing,Wang Haihui
Abstract
AbstractSolid-state lithium metal batteries (SSLMBs) show great promise in terms of high-energy–density and high-safety performance. However, there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes, and to minimize the electrolyte thickness to achieve high-energy–density of SSLMBs. Herein, we develop an ultrathin (12.6 µm) asymmetric composite solid-state electrolyte with ultralight areal density (1.69 mg cm−2) for SSLMBs. The electrolyte combining a garnet (LLZO) layer and a metal organic framework (MOF) layer, which are fabricated on both sides of the polyethylene (PE) separator separately by tape casting. The PE separator endows the electrolyte with flexibility and excellent mechanical properties. The LLZO layer on the cathode side ensures high chemical stability at high voltage. The MOF layer on the anode side achieves a stable electric field and uniform Li flux, thus promoting uniform Li+ deposition. Thanks to the well-designed structure, the Li symmetric battery exhibits an ultralong cycle life (5000 h), and high-voltage SSLMBs achieve stable cycle performance. The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg−1/773.1 Wh L−1. This simple operation allows for large-scale preparation, and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献