Oxygen-Coordinated Single Mn Sites for Efficient Electrocatalytic Nitrate Reduction to Ammonia

Author:

Zhang Shengbo,Zha Yuankang,Ye Yixing,Li Ke,Lin Yue,Zheng Lirong,Wang Guozhong,Zhang Yunxia,Yin Huajie,Shi Tongfei,Zhang Haimin

Abstract

AbstractElectrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection. Here, we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen (O) coordination on bacterial cellulose-converted graphitic carbon (Mn–O–C). Evidence of the atomically dispersed Mn–(O–C2)4 moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy. As a result, the as-synthesized Mn–O–C catalyst exhibits superior NitRR activity with an NH3 yield rate (RNH3) of 1476.9 ± 62.6 μg h1 cm2 at − 0.7 V (vs. reversible hydrogen electrode, RHE) and a faradaic efficiency (FE) of 89.0 ± 3.8% at − 0.5 V (vs. RHE) under ambient conditions. Further, when evaluated with a practical flow cell, Mn–O–C shows a high RNH3 of 3706.7 ± 552.0 μg h1 cm2 at a current density of 100 mA cm2, 2.5 times of that in the H cell. The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn–(O–C2)4 sites not only effectively inhibit the competitive hydrogen evolution reaction, but also greatly promote the adsorption and activation of nitrate (NO3), thus boosting both the FE and selectivity of NH3 over Mn–(O–C2)4 sites.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3