Author:
Gao Zheng,Zhou Hai,Dong Kailian,Wang Chen,Wei Jiayun,Li Zhe,Li Jiashuai,Liu Yongjie,Zhao Jiang,Fang Guojia
Abstract
AbstractIn recent years, Pb-free CsSnI3 perovskite materials with excellent photoelectric properties as well as low toxicity are attracting much attention in photoelectric devices. However, deep level defects in CsSnI3, such as high density of tin vacancies, structural deformation of SnI6− octahedra and oxidation of Sn2+ states, are the major challenge to achieve high-performance CsSnI3-based photoelectric devices with good stability. In this work, defect passivation method is adopted to solve the above issues, and the ultra-stable and high-performance CsSnI3 nanowires (NWs) photodetectors (PDs) are fabricated via incorporating 1-butyl-2,3-dimethylimidazolium chloride salt (BMIMCl) into perovskites. Through materials analysis and theoretical calculations, BMIM+ ions can effectively passivate the Sn-related defects and reduce the dark current of CsSnI3 NW PDs. To further reduce the dark current of the devices, the polymethyl methacrylate is introduced, and finally, the dual passivated CsSnI3 NWPDs show ultra-high performance with an ultra-low dark current of 2 × 10–11 A, a responsivity of up to 0.237 A W−1, a high detectivity of 1.18 × 1012 Jones and a linear dynamic range of 180 dB. Furthermore, the unpackaged devices exhibit ultra-high stability in device performance after 60 days of storage in air (25 °C, 50% humidity), with the device performance remaining above 90%.
Funder
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献