Author:
Pan Zhen,Qian Yong,Li Yang,Xie Xiaoning,Lin Ning,Qian Yitai
Abstract
AbstractWith the advantages of high energy/power density, long cycling life and low cost, dual-carbon potassium ion hybrid capacitors (PIHCs) have great potential in the field of energy storage. Here, a novel bilayer-shelled N, O-doped hollow porous carbon microspheres (NOHPC) anode has been prepared by a self-template method, which is consisted of a dense thin shell and a hollow porous spherical core. Excitingly, the NOHPC anode possesses a high K-storage capacity of 325.9 mA h g−1 at 0.1 A g−1 and a capacity of 201.1 mAh g−1 at 5 A g−1 after 6000 cycles. In combination with ex situ characterizations and density functional theory calculations, the high reversible capacity has been demonstrated to be attributed to the co-doping of N/O heteroatoms and porous structure improved K+ adsorption and intercalation capabilities, and the stable long-cycling performance originating from the bilayer-shelled hollow porous carbon sphere structure. Meanwhile, the hollow porous activated carbon microspheres (HPAC) cathode with a high specific surface area (1472.65 m2 g−1) deriving from etching NOHPC with KOH, contributing to a high electrochemical adsorption capacity of 71.2 mAh g−1 at 1 A g−1. Notably, the NOHPC//HPAC PIHC delivers a high energy density of 90.1 Wh kg−1 at a power density of 939.6 W kg−1 after 6000 consecutive charge–discharge cycles.
Funder
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献