Super-Tough and Environmentally Stable Aramid. Nanofiber@MXene Coaxial Fibers with Outstanding Electromagnetic Interference Shielding Efficiency

Author:

Liu Liu-Xin,Chen Wei,Zhang Hao-Bin,Ye Lvxuan,Wang Zhenguo,Zhang Yu,Min Peng,Yu Zhong-Zhen

Abstract

AbstractAlthough electrically conductive and hydrophilic MXene sheets are promising for multifunctional fibers and electronic textiles, it is still a challenge to simultaneously enhance both conductivity and mechanical properties of MXene fibers because of the high rigidity of MXene sheets and insufficient inter-sheet interactions. Herein, we demonstrate a core–shell wet-spinning methodology for fabricating highly conductive, super-tough, ultra-strong, and environmentally stable Ti3C2Tx MXene-based core–shell fibers with conductive MXene cores and tough aramid nanofiber (ANF) shells. The highly orientated and low-defect structure endows the ANF@MXene core–shell fiber with super-toughness of ~ 48.1 MJ m−3, high strength of ~ 502.9 MPa, and high conductivity of ~ 3.0 × 105 S m−1. The super-tough and conductive ANF@MXene fibers can be woven into textiles, exhibiting an excellent electromagnetic interference (EMI) shielding efficiency of 83.4 dB at a small thickness of 213 μm. Importantly, the protection of the ANF shells provides the fibers with satisfactory cyclic stability under dynamic stretching and bending, and excellent resistance to acid, alkali, seawater, cryogenic and high temperatures, and fire. The oxidation resistance of the fibers is demonstrated by their well-maintained EMI shielding performances. The multifunctional core–shell fibers would be highly promising in the fields of EMI shielding textiles, wearable electronics and aerospace.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3