Author:
Lim Hyeongtae,Kwon Hyeokjin,Kang Hongki,Jang Jae Eun,Kwon Hyuk-Jun
Abstract
AbstractAdvancements in sensor technology have significantly enhanced atmospheric monitoring. Notably, metal oxide and carbon (MOx/C) hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance. However, previous methods of synthesizing MOx/C composites suffer from problems, including inhomogeneity, aggregation, and challenges in micropatterning. Herein, we introduce a refined method that employs a metal–organic framework (MOF) as a precursor combined with direct laser writing. The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers, yielding homogeneous MOx/C structures. The laser processing facilitates precise micropatterning (< 2 μm, comparable to typical photolithography) of the MOx/C crystals. The optimized MOF-derived MOx/C sensor rapidly detected ethanol gas even at room temperature (105 and 18 s for response and recovery, respectively), with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%. Additionally, this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts. This research opens up promising avenues for practical applications in MOF-derived sensing devices.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献