Machine learning models to predict sewer concrete strength exposed to sulfide environments: unveiling the superiority of Bayesian-optimized prediction models
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s41939-024-00561-w.pdf
Reference84 articles.
1. Ahmed A et al (2023) Hybrid BO-XGBoost and BO-RF models for the strength prediction of self-compacting mortars with parametric analysis. Materials 16(12):4366
2. Alaejos P, Bermudez MA (2011) Influence of seawater curing in standard and high-strength submerged concrete. J Mater Civ Eng 23(6):915–920
3. Alani AM, Faramarzi A (2014) An evolutionary approach to modelling concrete degradation due to sulphuric acid attack. Appl Soft Comput 24(1):985–993
4. Alexandridis A (2013) Evolving RBF neural networks for adaptive soft-sensor design. Int J Neural Syst 23:1350029
5. Amlashi AT et al (2022) Application of computational intelligence and statistical approaches for auto-estimating the compressive strength of plastic concrete. Eur J Environ Civ Eng 26(8):3459–3490
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3