Author:
Li Jie,Yan Gongxing,Chen Haojie
Funder
Chongqing city Yongchuan District Bureau of science and technology
Sichuan Province Luzhou city of science and technology planning project
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mechanics of Materials,General Materials Science
Reference54 articles.
1. Aggarwal Y, Aggarwal P (2011) Prediction of compressive strength of SCC containing bottom ash using artificial neural networks. Int J Math Comput Sci 5:762–767
2. Aghayari Hir M, Zaheri M, Rahimzadeh N (2022) Prediction of rural travel demand by spatial regression and artificial neural network methods (Tabriz County). J Transp Res 19(4):1–300
3. Al-Fugara AK, Pourghasemi HR, Al-Shabeeb AR, Habib M, Al-Adamat R, Al-Amoush H, Collins AL (2020) A comparison of machine learning models for the mapping of groundwater spring potential. Environ Earth Sci 79:1–19
4. Başyigit C, Akkurt I, Kilincarslan S, Beycioglu A (2010) Prediction of compressive strength of heavyweight concrete by ANN and FL models. Neural Comput Appl 19:507–513
5. Benemaran RS, Esmaeili-Falak M (2020) Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO. Comput Concr 26:309–316. https://doi.org/10.12989/cac.2020.26.4.309
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献