Experimental evaluation of a heat exchanger for different configurations between internal and external flow

Author:

Ramírez-Dolores C.,Andaverde J.,Ordoñez-Castillo L.,Wong-Loya J.

Abstract

AbstractIn the present work, the determination of the thermal effectiveness and temperature of the air at the outlet of a scale prototype of a heat exchanger immersed in flowing water was developed experimentally. This depended on the position of the working fluid (air) and of the heat exchanger positioning configuration. The tested positions were parallel flow, quasi-parallel oblique, counterflow, quasi-counterflow oblique, and crossflow. The temperature of the air at the outlet of the heat exchanger and the thermal effectiveness are essential to determine the most convenient operating position of these systems, especially those related to shallow geothermal energy. The thermohydraulic aspects of the heat exchanger presented were evaluated, by the Number of Transfer Units-Effectiveness (NTU-ε) method, under conditions of water flow in a natural channel and air flow induced by a blower, the system was built from commercial copper pipe and temperature sensors were placed in both the exchanger and the water to record temperature changes. The results of this study indicate that when the exchanger is positioned in the oblique quasi-counterflow position and the oblique quasi-parallel position, it exhibits the lowest air outlet temperatures and highest thermal effectiveness, which is relevant for building cooling applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3