1. Avraham, R., Logue, K., & Schwarcz, D. (2014). Understanding insurance antidiscrimination laws. Southern California Law Review, 87(195) https://scholarship.law.umn.edu/faculty_articles/576.
2. Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact. California Law Review, 104(671), 671–732.
3. Berk, R., Heidari, H., Jabbari, S., Joseph, M., Kearns, M., Morgenstern, J., Neel, S., & Roth, A. (2017). A convex framework for fair regression. ArXiv:1706.02409 [Cs, Stat] http://arxiv.org/abs/1706.02409.
4. Berk, R., Heidari, H., Jabbari, S., Kearns, M., & Roth, A. (2018). Fairness in criminal justice risk assessments: the state of the art. Sociological Methods & Research, 0049124118782533. https://doi.org/10.1177/0049124118782533.
5. Binns, R. D. P. (2018). Fairness in machine learning: lessons from political philosophy. Journal of Machine Learning Research. https://ora.ox.ac.uk/objects/uuid:2ff2785b-b0d4-447a-8326-a1fcc4c80840.