Choosing how to discriminate: navigating ethical trade-offs in fair algorithmic design for the insurance sector

Author:

Loi MicheleORCID,Christen Markus

Abstract

AbstractHere, we provide an ethical analysis of discrimination in private insurance to guide the application of non-discriminatory algorithms for risk prediction in the insurance context. This addresses the need for ethical guidance of data-science experts, business managers, and regulators, proposing a framework of moral reasoning behind the choice of fairness goals for prediction-based decisions in the insurance domain. The reference to private insurance as a business practice is essential in our approach, because the consequences of discrimination and predictive inaccuracy in underwriting are different from those of using predictive algorithms in other sectors (e.g., medical diagnosis, sentencing). Here we focus on the trade-off in the extent to which one can pursue indirect non-discrimination versus predictive accuracy. The moral assessment of this trade-off is related to the context of application—to the consequences of inaccurate risk predictions in the insurance domain.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

History and Philosophy of Science,Philosophy

Reference46 articles.

1. Avraham, R., Logue, K., & Schwarcz, D. (2014). Understanding insurance antidiscrimination laws. Southern California Law Review, 87(195) https://scholarship.law.umn.edu/faculty_articles/576.

2. Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact. California Law Review, 104(671), 671–732.

3. Berk, R., Heidari, H., Jabbari, S., Joseph, M., Kearns, M., Morgenstern, J., Neel, S., & Roth, A. (2017). A convex framework for fair regression. ArXiv:1706.02409 [Cs, Stat] http://arxiv.org/abs/1706.02409.

4. Berk, R., Heidari, H., Jabbari, S., Kearns, M., & Roth, A. (2018). Fairness in criminal justice risk assessments: the state of the art. Sociological Methods & Research, 0049124118782533. https://doi.org/10.1177/0049124118782533.

5. Binns, R. D. P. (2018). Fairness in machine learning: lessons from political philosophy. Journal of Machine Learning Research. https://ora.ox.ac.uk/objects/uuid:2ff2785b-b0d4-447a-8326-a1fcc4c80840.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resolving Ethics Trade-offs in Implementing Responsible AI;2024 IEEE Conference on Artificial Intelligence (CAI);2024-06-25

2. Insights From Insurance for Fair Machine Learning;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

3. The dark side of AI in professional services;The Service Industries Journal;2024-04-10

4. Consumer Protection Law and AI;The Cambridge Handbook of Private Law and Artificial Intelligence;2024-03-28

5. Law of Obligations;The Cambridge Handbook of Private Law and Artificial Intelligence;2024-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3