Author:
Baaz Matthias,Fermüller Christian G.,Ovrutcki Arie,Zach Richard
Publisher
Springer Berlin Heidelberg
Reference5 articles.
1. M. Baaz and C. G. Fermüller. Resolution for many-valued logics. Proc. Logic Programming and Automated Reasoning LPAR'92, LNAI 624, 107–118, Springer, 1992.
2. M. Baaz, C. G. Fermüller, and R. Zach. Systematic construction of natural deduction systems for many-valued logics. Proc. 23rd International Symposium on Multiple-valued Logic. IEEE Press, 1993. to appear.
3. W. A. Carnielli. Systematization of finite many-valued logics through the method of tableaux. J. Symbolic Logic, 52(2):473–493, 1987.
4. G. Rousseau. Sequents in many valued logic I. Fund. Math., 60:23–33, 1967.
5. K. Schröter. Methoden zur Axiomatisierung beliebiger Aussagen-und Prädikaten-kalküle. Z. Math. Logik Grundlag. Math., 1:241–251, 1955.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. R-Calculus for $$\mathbf{L}_3$$-Valued PL;R-Calculus, II: Many-Valued Logics;2022
2. R-Calculus for $$\mathbf{B}_2^2$$-Valued PL;R-Calculus, II: Many-Valued Logics;2022
3. R-Calculus for $$\mathbf{L}_3$$-Valued PL, II;R-Calculus, II: Many-Valued Logics;2022
4. Variant quantifiers in L3-valued first-order logic;Frontiers of Computer Science;2021-05-27
5. The Inverse Method for Many-Valued Logics;Advances in Artificial Intelligence and Its Applications;2013