Abstract
Abstract
Purpose
The aim of this study was to identify in vivo phase I metabolites of five psychoactive substances: N-ethylpentylone, ethylone, methylone, α-PVP and 4-CDC, using the in house developed experimental set-up zebrafish (Danio rerio) water tank (ZWT). High-resolution mass spectrometry allowed for metabolite identification. A pilot study of reference standard collection of N-ethylpentylone from the water tank was conducted.
Methods
ZWT consisted in 8 fish placed in a 200 mL recipient-containing water for a single cathinone. Experiments were performed in triplicate. Water tank samples were collected after 8 h and pretreated through solid-phase extraction. Separation and accurate-mass spectra of metabolites were obtained using liquid chromatography–high resolution tandem mass spectrometry.
Results
Phase I metabolites of α-PVP were identified, which were formed involving ketone reduction, hydroxylation, and 2″-oxo-pyrrolidine formation. The lactam derivative was the major metabolite observed for α-PVP in ZWT. N-Ethylpentylone and ethylone were transformed into phase I metabolites involving reduction, hydroxylation, and dealkylation. 4-CDC was transformed into phase I metabolites, reported for the first time, involving N-dealkylation, N,N-bis-dealkylation and reduction of the ketone group, the last one being the most intense after 8 h of the experiment.
Conclusions
ZWT model indicated to be very useful to study the metabolism of the synthetic cathinones, such as N-ethylpentylone, ethylone, α-PVP and 4-CDC. Methylone seems to be a potent CYP450 inhibitor in zebrafish. More experiments are needed to better evaluate this issue. Finally, this approach was quite simple, straightforward, extremely low cost, and fast for “human-like” metabolic studies of synthetic cathinones.
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry, medical,Toxicology,Pathology and Forensic Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献