Abstract
Abstract
Purpose
A tert-leucinate derivative synthetic cannabinoid, methyl (2S)-2-([1-(4-fluorobutyl)-1H-indazole-3-carbonyl]amino)-3,3-dimethylbutanoate (4F-MDMB-BINACA, 4F-MDMB-BUTINACA or 4F-ADB) is known to adversely impact health. This study aimed to evaluate the suitability of three different modes of monitoring metabolism: HepG2 liver cells, fungus Cunninghamella elegans (C. elegans) and pooled human liver microsomes (HLM) for comparison with human in-vivo metabolism in identifying suitable urinary marker(s) for 4F-MDMB-BINACA intake.
Methods
Tentative structure elucidation of in-vitro metabolites was performed on HepG2, C. elegans and HLM using liquid chromatography–tandem mass spectrometry and high-resolution mass spectrometry analysis. In-vivo metabolites obtained from twenty authentic human urine samples were analysed using liquid chromatography–Orbitrap mass spectrometry.
Results
Incubation with HepG2, C. elegans and HLM yielded nine, twenty-three and seventeen metabolites of 4F-MDMB-BINACA, respectively, formed via ester hydrolysis, hydroxylation, carboxylation, dehydrogenation, oxidative defluorination, carbonylation or reaction combinations. Phase II metabolites of glucosidation and sulfation were also exclusively identified using C. elegans model. Eight in-vivo metabolites tentatively identified were mainly products of ester hydrolysis with or without additional dehydrogenation, N-dealkylation, monohydroxylation and oxidative defluorination with further oxidation to butanoic acid. Metabolites with intact terminal methyl ester moiety, i.e., oxidative defluorination with further oxidation to butanoic acid, were also tentatively identified.
Conclusions
The in-vitro models presented proved useful in the exhaustive metabolism studies. Despite limitations, HepG2 identified the major 4F-MDMB-BINACA ester hydrolysis metabolite, and C. elegans demonstrated the capacity to produce a wide variety of metabolites. Both C. elegans and HLM produced all the in-vivo metabolites. Ester hydrolysis and ester hydrolysis plus dehydrogenation 4F-MDMB-BINACA metabolites were recommended as urinary markers for 4F-MDMB-BINACA intake.
Funder
Australian Government Research Training Program Scholarship
Australian Research Council Discovery grant
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry (medical),Toxicology,Pathology and Forensic Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献