Stress monitoring using wearable sensors: IoT techniques in medical field

Author:

Talaat Fatma M.ORCID,El-Balka Rana Mohamed

Abstract

AbstractThe concept “Internet of Things” (IoT), which facilitates communication between linked devices, is relatively new. It refers to the next generation of the Internet. IoT supports healthcare and is essential to numerous applications for tracking medical services. By examining the pattern of observed parameters, the type of the disease can be anticipated. For people with a range of diseases, health professionals and technicians have developed an excellent system that employs commonly utilized techniques like wearable technology, wireless channels, and other remote equipment to give low-cost healthcare monitoring. Whether put in living areas or worn on the body, network-related sensors gather detailed data to evaluate the patient's physical and mental health. The main objective of this study is to examine the current e-health monitoring system using integrated systems. Automatically providing patients with a prescription based on their status is the main goal of the e-health monitoring system. The doctor can keep an eye on the patient's health without having to communicate with them. The purpose of the study is to examine how IoT technologies are applied in the medical industry and how they help to raise the bar of healthcare delivered by healthcare institutions. The study will also include the uses of IoT in the medical area, the degree to which it is used to enhance conventional practices in various health fields, and the degree to which IoT may raise the standard of healthcare services. The main contributions in this paper are as follows: (1) importing signals from wearable devices, extracting signals from non-signals, performing peak enhancement; (2) processing and analyzing the incoming signals; (3) proposing a new stress monitoring algorithm (SMA) using wearable sensors; (4) comparing between various ML algorithms; (5) the proposed stress monitoring algorithm (SMA) is composed of four main phases: (a) data acquisition phase, (b) data and signal processing phase, (c) prediction phase, and (d) model performance evaluation phase; and (6) grid search is used to find the optimal values for hyperparameters of SVM (C and gamma). From the findings, it is shown that random forest is best suited for this classification, with decision tree and XGBoost following closely behind.

Funder

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3