Damage detection using in-domain and cross-domain transfer learning

Author:

Bukhsh Zaharah A.ORCID,Jansen NilsORCID,Saeed AaqibORCID

Abstract

AbstractWe investigate the capabilities of transfer learning in the area of structural health monitoring. In particular, we are interested in damage detection for concrete structures. Typical image datasets for such problems are relatively small, calling for the transfer of learned representation from a related large-scale dataset. Past efforts of damage detection using images have mainly considered cross-domain transfer learning approaches using pre-trained ImageNet models that are subsequently fine-tuned for the target task. However, there are rising concerns about the generalizability of ImageNet representations for specific target domains, such as for visual inspection and medical imaging. We, therefore, evaluate a combination of in-domain and cross-domain transfer learning strategies for damage detection in bridges. We perform comprehensive comparisons to study the impact of cross-domain and in-domain transfer, with various initialization strategies, using six publicly available visual inspection datasets. The pre-trained models are also evaluated for their ability to cope with the extremely low-data regime. We show that the combination of cross-domain and in-domain transfer persistently shows superior performance specially with tiny datasets. Likewise, we also provide visual explanations of predictive models to enable algorithmic transparency and provide insights to experts about the intrinsic decision logic of typically black-box deep models.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3