Analyzing the impact of Driving tasks when detecting emotions through brain–computer interfaces

Author:

Quiles Pérez MarioORCID,Martínez Beltrán Enrique Tomás,López Bernal Sergio,Martínez Pérez Gregorio,Huertas Celdrán Alberto

Abstract

AbstractTraffic accidents are the leading cause of death among young people, a problem that today costs an enormous number of victims. Several technologies have been proposed to prevent accidents, being brain–computer interfaces (BCIs) one of the most promising. In this context, BCIs have been used to detect emotional states, concentration issues, or stressful situations, which could play a fundamental role in the road since they are directly related to the drivers’ decisions. However, there is no extensive literature applying BCIs to detect subjects’ emotions in driving scenarios. In such a context, there are some challenges to be solved, such as (i) the impact of performing a driving task on the emotion detection and (ii) which emotions are more detectable in driving scenarios. To improve these challenges, this work proposes a framework focused on detecting emotions using electroencephalography with machine learning and deep learning algorithms. In addition, a use case has been designed where two scenarios are presented. The first scenario consists in listening to sounds as the primary task to perform, while in the second scenario listening to sound becomes a secondary task, being the primary task using a driving simulator. In this way, it is intended to demonstrate whether BCIs are useful in this driving scenario. The results improve those existing in the literature, achieving 99% accuracy for the detection of two emotions (non-stimuli and angry), 93% for three emotions (non-stimuli, angry and neutral) and 75% for four emotions (non-stimuli, angry, neutral and joy).

Funder

Swiss Federal Office for Defense Procurement

Bit & Brain Technologies S.L.

University of Zurich UZH

Fundación Séneca

Universidad de Murcia

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3