A multi-variate heart disease optimization and recognition framework

Author:

Balaha Hossam MagdyORCID,Shaban Ahmed Osama,El-Gendy Eman M.,Saafan Mahmoud M.

Abstract

AbstractCardiovascular diseases (CVD) are the most widely spread diseases all over the world among the common chronic diseases. CVD represents one of the main causes of morbidity and mortality. Therefore, it is vital to accurately detect the existence of heart diseases to help to save the patient life and prescribe a suitable treatment. The current evolution in artificial intelligence plays an important role in helping physicians diagnose different diseases. In the present work, a hybrid framework for the detection of heart diseases using medical voice records is suggested. A framework that consists of four layers, namely “Segmentation” Layer, “Features Extraction” Layer, “Learning and Optimization” Layer, and “Export and Statistics” Layer is proposed. In the first layer, a novel segmentation technique based on the segmentation of variable durations and directions (i.e., forward and backward) is suggested. Using the proposed technique, 11 datasets with 14,416 numerical features are generated. The second layer is responsible for feature extraction. Numerical and graphical features are extracted from the resulting datasets. In the third layer, numerical features are passed to 5 different Machine Learning (ML) algorithms, while graphical features are passed to 8 different Convolutional Neural Networks (CNN) with transfer learning to select the most suitable configurations. Grid Search and Aquila Optimizer (AO) are used to optimize the hyperparameters of ML and CNN configurations, respectively. In the last layer, the output of the proposed hybrid framework is validated using different performance metrics. The best-reported metrics are (1) 100% accuracy using ML algorithms including Extra Tree Classifier (ETC) and Random Forest Classifier (RFC) and (2) 99.17% accuracy using CNN.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3