CDA-LSTM: an evolutionary convolution-based dual-attention LSTM for univariate time series prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-021-06212-2.pdf
Reference42 articles.
1. Song G, Dai Q (2017) A novel double deep ELMs ensemble system for time series forecasting. Knowl-Based Syst 134:31–49. https://doi.org/10.1016/j.knosys.2017.07.014
2. Längkvist M, Karlsson L, Loutfi A (2014) A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn Lett 42:11–24. https://doi.org/10.1016/j.patrec.2014.01.008
3. Yang H-F, Chen Y-PP (2019) Hybrid deep learning and empirical mode decomposition model for time series applications. Expert Syst Appl 120:128–138. https://doi.org/10.1016/j.eswa.2018.11.019
4. Kanarachos S, Christopoulos S-RG, Chroneos A, Fitzpatrick ME (2017) Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform. Expert Syst Appl 85:292–304. https://doi.org/10.1016/j.eswa.2017.04.028
5. Rodrigues F, Markou I, Pereira FC (2019) Combining time-series and textual data for taxi demand prediction in event areas: a deep learning approach. Inf Fusion 49:120–129. https://doi.org/10.1016/j.inffus.2018.07.007
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Accurate Satellite Operation Predictions Using Attention-BiLSTM Model with Telemetry Correlation;Aerospace;2024-05-15
2. Multi-scale deep echo state network for time series prediction;Neural Computing and Applications;2024-04-25
3. SPLSTM: A Prediction Model for Operational Faults in Rotating Machinery;IEEE Sensors Journal;2024-04-01
4. Decomposition strategy and attention-based long short-term memory network for multi-step ultra-short-term agricultural power load forecasting;Expert Systems with Applications;2024-03
5. A new hybrid model for photovoltaic output power prediction;Environmental Science and Pollution Research;2023-11-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3