Machine learning models for forecasting water demand for the Metropolitan Region of Salvador, Bahia
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-023-08842-0.pdf
Reference38 articles.
1. Adamowski J, Karapataki C (2010) Comparison of multivariative regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. J Hydrol Eng 15:729–743. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000245
2. Alvisi S, Franchini M, Marinelli A (2007) A short-term, pattern-based model for water-demand forecasting. J Hydroinformat 9(1):39–50. https://doi.org/10.2166/hydro.2006.016
3. Babu CN, Reddy BE (2014) A moving-average filter based hybrid Arima-ANN model for forecasting time series data. Appl Soft Comput 23:27–38. https://doi.org/10.1016/j.asoc.2014.05.028
4. Bakker M, van Duist H, van Schagen K et al (2014) Improving the performance of water demand forecasting models by using weather input. Proced Eng 70:93–102. https://doi.org/10.1016/j.proeng.2014.02.012
5. Bougadis J, Adamowski K, Diduch R (2005) Short-term municipal water demand forecasting. Hydrol Process 19(1):137–148. https://doi.org/10.1002/hyp.5763
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel metaheuristic optimization and soft computing techniques for improved hydrological drought forecasting;Physics and Chemistry of the Earth, Parts A/B/C;2024-10
2. A Hybrid Forecasting Structure Based on Arima and Artificial Neural Network Models;Applied Sciences;2024-08-14
3. A Comprehensive Survey of Machine Learning Methodologies with Emphasis in Water Resources Management;Applied Sciences;2023-11-08
4. A hybrid system based on ensemble learning to model residuals for time series forecasting;Information Sciences;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3