Class binarization to neuroevolution for multiclass classification

Author:

Lan GongjinORCID,Gao ZhenyuORCID,Tong Lingyao,Liu TingORCID

Abstract

AbstractMulticlass classification is a fundamental and challenging task in machine learning. The existing techniques of multiclass classification can be categorized as (1) decomposition into binary (2) extension from binary and (3) hierarchical classification. Decomposing multiclass classification into a set of binary classifications that can be efficiently solved by using binary classifiers, called class binarization, which is a popular technique for multiclass classification. Neuroevolution, a general and powerful technique for evolving the structure and weights of neural networks, has been successfully applied to binary classification. In this paper, we apply class binarization techniques to a neuroevolution algorithm, NeuroEvolution of Augmenting Topologies (NEAT), that are used to generate neural networks for multiclass classification. We propose a new method that applies Error-Correcting Output Codes (ECOC) to design the class binarization strategies on the neuroevolution for multiclass classification. The ECOC strategies are compared with the class binarization strategies of One-vs-One and One-vs-All on three well-known datasets of Digit, Satellite, and Ecoli. We analyse their performance from four aspects of multiclass classification degradation, accuracy, evolutionary efficiency, and robustness. The results show that the NEAT with ECOC performs high accuracy with low variance. Specifically, it shows significant benefits in a flexible number of binary classifiers and strong robustness.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3