Conditional image-to-image translation generative adversarial network (cGAN) for fabric defect data augmentation

Author:

Mohammed Swash SamiORCID,Clarke Hülya Gökalp

Abstract

AbstractThe availability of comprehensive datasets is a crucial challenge for developing artificial intelligence (AI) models in various applications and fields. The lack of large and diverse public fabric defect datasets forms a major obstacle to properly and accurately developing and training AI models for detecting and classifying fabric defects in real-life applications. Models trained on limited datasets struggle to identify underrepresented defects, reducing their practicality. To address these issues, this study suggests using a conditional generative adversarial network (cGAN) for fabric defect data augmentation. The proposed image-to-image translator GAN features a conditional U-Net generator and a 6-layered PatchGAN discriminator. The conditional U-Network (U-Net) generator can produce highly realistic synthetic defective samples and offers the ability to control various characteristics of the generated samples by taking two input images: a segmented defect mask and a clean fabric image. The segmented defect mask provides information about various aspects of the defects to be added to the clean fabric sample, including their type, shape, size, and location. By augmenting the training dataset with diverse and realistic synthetic samples, the AI models can learn to identify a broader range of defects more accurately. This technique helps overcome the limitations of small or unvaried datasets, leading to improved defect detection accuracy and generalizability. Moreover, this proposed augmentation method can find applications in other challenging fields, such as generating synthetic samples for medical imaging datasets related to brain and lung tumors.

Funder

Ondokuz Mayıs University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3