Online signature verification using signature down-sampling and signer-dependent sampling frequency

Author:

Saleem MohammadORCID,Kovari Bence

Abstract

AbstractOnline signature verification considers signatures as time sequences of different measurements of the signing instrument. These signals are captured on digital devices and therefore consist of a discrete number of samples. To enrich or simplify this information, several verifiers employ resampling and interpolation as a preprocessing step to improve their results; however, their design decisions may be difficult to generalize. This study investigates the direct effect of the sampling rate of the input signals on the accuracy of online signature verification systems without using interpolation techniques and proposes a novel online signature verification system based on a signer-dependent sampling frequency. Twenty verifier configurations were created for five different public signature databases and a variety of popular preprocessing approaches and evaluated for 20–40 different sampling rates. Our results show that there is an optimal range for the sampling frequency and the number of sample points that minimizes the error rate of a verifier. A sampling frequency range of 15–50 Hz and a signature point count of 60–240 provided the best accuracies in our experiments. As expected, lower ranges showed inaccurate results; interestingly, however, higher frequencies often decreased the verification accuracy. The results show that one can achieve better or at least the same verification accuracies faster by down-sampling the online signatures before further processing. The proposed system achieved competitive results to state-of-the-art systems for different databases by using the optimal sampling frequency. We also studied the effect of choosing individual sampling frequencies for each signer and proposed a signature verification system based on signer-dependent sampling frequency. The proposed system was tested using 500 different verification methods and improved the accuracy in 92% of the test cases compared to the usage of the original frequency.

Funder

nemzeti kutatási, fejlesztési és innovaciós alap

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3