Quantifying the effect of feedback frequency in interactive reinforcement learning for robotic tasks

Author:

Harnack Daniel,Pivin-Bachler Julie,Navarro-Guerrero NicolásORCID

Abstract

AbstractReinforcement learning (RL) has become widely adopted in robot control. Despite many successes, one major persisting problem can be very low data efficiency. One solution is interactive feedback, which has been shown to speed up RL considerably. As a result, there is an abundance of different strategies, which are, however, primarily tested on discrete grid-world and small scale optimal control scenarios. In the literature, there is no consensus about which feedback frequency is optimal or at which time the feedback is most beneficial. To resolve these discrepancies we isolate and quantify the effect of feedback frequency in robotic tasks with continuous state and action spaces. The experiments encompass inverse kinematics learning for robotic manipulator arms of different complexity. We show that seemingly contradictory reported phenomena occur at different complexity levels. Furthermore, our results suggest that no single ideal feedback frequency exists. Rather that feedback frequency should be changed as the agent’s proficiency in the task increases.

Funder

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI)

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference27 articles.

1. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A et al (2017) Mastering the game of go without human knowledge. Nature 550(7676):354–359. https://doi.org/10.1038/nature24270

2. Arzate Cruz C, Igarashi T (2020) a survey on interactive reinforcement learning: design principles and open challenges. In: ACM designing interactive systems conference (DIS). Eindhoven, The Netherlands: Association for Computing Machinery; p. 1195–1209

3. Tan M (1997) Multi-agent reinforcement learning: independent vs. cooperative agents. In: Readings in agents. Morgan Kaufmann Publishers Inc.. p. 487–494

4. Da Silva FL, Warnell G, Costa AHR, Stone P (2019) Agents teaching agents: a survey on inter-agent transfer learning. Auton Agents Multi-Agent Syst 34(1):9. https://doi.org/10.1007/s10458-019-09430-0

5. Ng AY, Harada D, Russell SJ (1999) Policy invariance under reward transformations: theory and application to reward shaping. In: International conference on machine learning (ICML). vol. Sixteenth. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; p. 278–287

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantifying the Impact of AI and Machine Learning on Data Access Optimization;2023 IEEE International Conference on Paradigm Shift in Information Technologies with Innovative Applications in Global Scenario (ICPSITIAGS);2023-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3