BINGO: brain-inspired learning memory

Author:

Chakraborty PrabuddhaORCID,Bhunia Swarup

Abstract

AbstractStorage and retrieval of data in a computer memory play a major role in system performance. Traditionally, computer memory organization is ‘static’—i.e. it does not change based on the application-specific characteristics in memory access behaviour during system operation. Specifically, in the case of a content-operated memory (COM), the association of a data block with a search pattern (or cues) and the granularity (details) of a stored data do not evolve. Such a static nature of computer memory, we observe, not only limits the amount of data we can store in a given physical storage, but it also misses the opportunity for performance improvement in various applications. On the contrary, human memory is characterized by seemingly infinite plasticity in storing and retrieving data—as well as dynamically creating/updating the associations between data and corresponding cues. In this paper, we introduce BINGO, a brain-inspired learning memory paradigm that organizes the memory as a flexible neural memory network. In BINGO, the network structure, strength of associations, and granularity of the data adjust continuously during system operation, providing unprecedented plasticity and performance benefits. We present the associated storage/retrieval/retention algorithms in BINGO, which integrate a formalized learning process. Using an operational model, we demonstrate that BINGO achieves an order of magnitude improvement in memory access times and effective storage capacity using the CIFAR-10 dataset and the wildlife surveillance dataset when compared to traditional content-operated memory.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Self-Aware Digital Memory Framework Powered by Artificial Intelligence;IEEE Transactions on Artificial Intelligence;2024-07

2. Prefetching Using Principles of Hippocampal-Neocortical Interaction;Proceedings of the 19th Workshop on Hot Topics in Operating Systems;2023-06-22

3. IoT and Deep Learning-Based Farmer Safety System;Sensors;2023-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3