CNN-LSTM and clustering-based spatial–temporal demand forecasting for on-demand ride services
Author:
Funder
Erciyes University Technology Transfer Office
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-022-07681-9.pdf
Reference37 articles.
1. Ke J, Qin X, Yang H, Zheng Z, Zhu Z, Ye J (2021) Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network. Transport Res C-Emer Technol 122:102858. https://doi.org/10.1016/j.trc.2020.102858
2. Li X, Pan G, Wu Z, Qi G, Li S, Zhang D, Zhang W, Wang Z (2012) Prediction of urban human mobility using large-scale taxi traces and its applications. Front Comput Sci China 6(1):111–121. https://doi.org/10.1007/s11704-011-1192-6
3. Moreira-Matias L, Gama J, Ferreira M, Mendes-Moreira J, Damas L (2013) Predicting taxi–passenger demand using streaming data. IEEE Trans Intell Transp Syst 14:1393–1402. https://doi.org/10.1109/TITS.2013.2262376
4. Faghih S, Shah A, Wang Z, Safikhani A, Kamga C (2020) Taxi and mobility: modeling taxi demand using ARMA and linear regression. Procedia Comput Sci 177:186–195. https://doi.org/10.1016/j.procs.2020.10.027
5. Faghih SS, Safikhani A, Moghimi B, Kamga C (2019) Predicting short-term Uber demand in New York city using spatiotemporal modeling. J Comput Civ Eng 33:05019002. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000825
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A multi-task deep learning framework for forecasting sparse demand of demand responsive transit;Expert Systems with Applications;2024-09
2. Deep learning-based port-classification approach incorporating LSTM network for high-throughput data center interconnect;Multimedia Tools and Applications;2024-08-28
3. An Enhanced Multiview Transformer for Population Density Estimation Using Cellular Mobility Data in Smart City;Computers, Materials & Continua;2024
4. Leak Detection in Natural Gas Pipelines Based on Unsupervised Reconstruction of Healthy Flow Data;SPE Production & Operations;2023-04-17
5. A Multi-Task Deep Learning Framework for Forecasting Sparse Demand of Demand Responsive Transit;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3