Abstract
AbstractReinforcement learning is a promising approach for manufacturing processes. Process knowledge can be gained automatically, and autonomous tuning of control is possible. However, the use of reinforcement learning in a production environment imposes specific requirements that must be met for a successful application. This article defines those requirements and evaluates three reinforcement learning methods to explore their applicability. The results show that convolutional neural networks are computationally heavy and violate the real-time execution requirements. A new architecture is presented and validated that allows using GPU-based hardware acceleration while meeting the real-time execution requirements.
Funder
Bundesministerium für Bildung und Forschung
Universität Stuttgart
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献