Feature transforms for image data augmentation

Author:

Nanni LorisORCID,Paci Michelangelo,Brahnam Sheryl,Lumini Alessandra

Abstract

AbstractA problem with convolutional neural networks (CNNs) is that they require large datasets to obtain adequate robustness; on small datasets, they are prone to overfitting. Many methods have been proposed to overcome this shortcoming with CNNs. In cases where additional samples cannot easily be collected, a common approach is to generate more data points from existing data using an augmentation technique. In image classification, many augmentation approaches utilize simple image manipulation algorithms. In this work, we propose some new methods for data augmentation based on several image transformations: the Fourier transform (FT), the Radon transform (RT), and the discrete cosine transform (DCT). These and other data augmentation methods are considered in order to quantify their effectiveness in creating ensembles of neural networks. The novelty of this research is to consider different strategies for data augmentation to generate training sets from which to train several classifiers which are combined into an ensemble. Specifically, the idea is to create an ensemble based on a kind of bagging of the training set, where each model is trained on a different training set obtained by augmenting the original training set with different approaches. We build ensembles on the data level by adding images generated by combining fourteen augmentation approaches, with three based on FT, RT, and DCT, proposed here for the first time. Pretrained ResNet50 networks are finetuned on training sets that include images derived from each augmentation method. These networks and several fusions are evaluated and compared across eleven benchmarks. Results show that building ensembles on the data level by combining different data augmentation methods produce classifiers that not only compete competitively against the state-of-the-art but often surpass the best approaches reported in the literature.

Funder

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference58 articles.

1. Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: CVPR. IEEE, Miami, pp 248–255

2. Shirke V, Walika R, Tambade L (2018) Drop: a simple way to prevent neural network by overfitting. Int J Res Eng Sci Manag 1(9):2581–5782

3. Palatucci M, Pomerleau DA, Hinton GE, Mitchell TM (2009) Zero-shot learning with semantic output codes. In: Neural information processing systems (NIPS), Vancouver, British Columbia, Canada, vol 22

4. Xian Y, Lampert CH, Schiele B, Akata Z (2019) Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans Pattern Anal Mach Intell 41(9):2251–2265

5. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(60):1–48

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3