Shrink–swell index prediction through deep learning

Author:

Teodosio B.ORCID,Wasantha P. L. P.,Yaghoubi E.,Guerrieri M.,C. van Staden R.,Fragomeni S.

Abstract

AbstractGrowing application of artificial intelligence in geotechnical engineering has been observed; however, its ability to predict the properties and nonlinear behaviour of reactive soil is currently not well considered. Although previous studies provided linear correlations between shrink–swell index and Atterberg limits, obtained model accuracy values were found unsatisfactory results. Artificial intelligence, specifically deep learning, has the potential to give improved accuracy. This research employed deep learning to predict more accurate values of shrink–swell indices, which explored two scenarios; Scenario 1 used the features liquid limit, plastic limit, plasticity index, and linear shrinkage, whilst Scenario 2 added the input feature, fines percentage passing through a 0.075-mm sieve (%fines). Findings indicated that the implementation of deep learning neural networks resulted in increased model measurement accuracy in Scenarios 1 and 2. The values of accuracy measured in this study were suggestively higher and have wider variance than most previous studies. Global sensitivity analyses were also conducted to investigate the influence of each input feature. These sensitivity analyses resulted in a range of predicted values within the variance of data in Scenario 2, with the %fines having the highest contribution to the variance of the shrink–swell index and a relevant interaction between linear shrinkage and %fines. The proposed model Scenario 2 was around 10–65% more accurate than the preceding models considered in this study, which can then be used to expeditiously estimate more accurate values of shrink–swell indices.

Funder

State Government of Victoria

Victoria University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biopolymer stabilization of clayey soil;J ROCK MECH GEOTECH;2024

2. Biopolymer stabilization of clayey soil;Journal of Rock Mechanics and Geotechnical Engineering;2024-07

3. ANN-based swarm intelligence for predicting expansive soil swell pressure and compression strength;Scientific Reports;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3