Classification of lower limb motor imagery based on iterative EEG source localization and feature fusion

Author:

Peng Xiaobo,Liu Junhong,Huang Ying,Mao Yanhao,Li Dong

Abstract

AbstractMotor imagery (MI) brain–computer interface (BCI) systems have broad application prospects in rehabilitation and other fields. However, to achieve accurate and practical MI-BCI applications, there are still several critical issues, such as channel selection, electroencephalogram (EEG) feature extraction and EEG classification, needed to be better resolved. In this paper, these issues are studied for lower limb MI which is more difficult and less studied than upper limb MI. First, a novel iterative EEG source localization method is proposed for channel selection. Channels FC1, FC2, C1, C2 and Cz, instead of the commonly used traditional channel set (TCS) C3, C4 and Cz, are selected as the optimal channel set (OCS). Then, a multi-domain feature (MDF) extraction algorithm is presented to fuse single-domain features into multi-domain features. Finally, a particle swarm optimization based support vector machine (SVM) method is utilized to classify the EEG data collected by the lower limb MI experiment designed by us. The results show that the classification accuracy is 88.43%, 3.35–5.41% higher than those of using traditional SVM to classify single-domain features on the TCS, which proves that the combination of OCS and MDF can not only reduce the amount of data processing, but also retain more feature information to improve the accuracy of EEG classification.

Funder

national natural science foundation of china

shenzhen basic research foundation

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3