Comparison of neural FEM and neural operator methods for applications in solid mechanics

Author:

Hildebrand StefanORCID,Klinge Sandra

Abstract

AbstractMachine learning methods are progressively investigated for a large amount of applications. Recently, the solution of partial differential equations (PDE) describing problems in elastostatics came into focus. The current work investigates two neural network-based classes of methods for their solution, namely the neural finite element method (FEM) and neural operator methods. The analysis of these approaches is carried out by means of numerical experiments with linear and nonlinear material behavior where the conventional FEM serves as a benchmark. The formulation of neural FEM allows for elegant integration of finite deformation hyperelasticity at medium training effort. Here, training data are replaced by the evaluation of the equilibrium PDE at sample points. In contrast, most neural operator methods require expensive training with large data sets, but then allow for solving multiple boundary value problems with the same machine learning model. For the comparative analysis, the maximal relative error values over the whole domain and over all components of the strain tensor are evaluated as accuracy measure. The current state of research shows that none of the methods investigated reaches the accuracy and computational performance of the conventional FEM. In many standard applications, the FEM achieves an accuracy of $$10^{-6}$$ 10 - 6 , whereas the numerical tests in the present work report a relative error of order of magnitude of $$10^{-4}$$ 10 - 4 for the neural FEM and $$10^{-2}$$ 10 - 2 to $$10^{-3}$$ 10 - 3 for neural operator methods.

Funder

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Reference58 articles.

1. Bock FE, Aydin RC, Cyron CJ, Huber N, Kalidindi SR, Klusemann B (2019) A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front Mater. https://doi.org/10.3389/fmats.2019.00110

2. Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101. https://doi.org/10.1016/j.cma.2016.02.001

3. Shoghi R, Hartmaier A (2022) Optimal data-generation strategy for machine learning yield functions in anisotropic plasticity. Front Mater 9:868248. https://doi.org/10.3389/fmats.2022.868248

4. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems, vol 32. Curran Associates, Inc., pp 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

5. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G.S, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software available from https://www.tensorflow.org/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3