Importance attribution in neural networks by means of persistence landscapes of time series

Author:

Ferrà AinaORCID,Casacuberta Carles,Pujol Oriol

Abstract

AbstractThis article describes a method to analyze time series with a neural network using a matrix of area-normalized persistence landscapes obtained with topological data analysis. The network’s architecture includes a gating layer that is able to identify the most relevant landscape levels for a classification task, thus working as an importance attribution system. Next, a matching is performed between the selected landscape levels and the corresponding critical points of the original time series. This matching enables reconstruction of a simplified shape of the time series that gives insight into the grounds of the classification decision. As a use case, this technique is tested in the article with input data from a dataset of electrocardiographic signals. The classification accuracy obtained using only a selection of landscape levels from data was $$94.00\%\pm 0.13$$ 94.00 % ± 0.13 averaged after five runs of a neural network, while the original signals achieved $$98.41\% \pm 0.09$$ 98.41 % ± 0.09 and landscape-reduced signals yielded $$97.04\% \pm 0.14$$ 97.04 % ± 0.14 .

Funder

Agencia Estatal de Investigación

Universitat de Barcelona

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference28 articles.

1. Naitzat G, Zhitnikov A, Lim L-H (2020) Topology of deep neural networks. J Machine Learn Res 21(184):1–40

2. Goldfarb D (2018) Understanding deep neural networks using topological data analysis. arXiv:1811.00852 [cs.LG]

3. Ballester R, Arnal X, Casacuberta C, Madadi M, Corneanu CA, Escalera S (2022) Predicting the generalization gap in neural networks using topological data analysis. arXiv:2203.12330 [cs.LG]

4. Corneanu CA, Escalera S, Martinez AM (2020) Computing the testing error without a testing set. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2674–2682. https://doi.org/10.1109/CVPR42600.2020.00275

5. Bubenik P (2015) Statistical topological data analysis using persistence landscapes. J Machine Learn Res 16:77–102

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3