Classification of orbital tumors using convolutional neural networks

Author:

Allam EsraaORCID,Salem Abdel-Badeeh M.,Alfonse Marco

Abstract

AbstractOrbital tumors are the most common eye tumors that affect people all over the world. Early detection prevents the progression to other regions of the eye and the body. Also, early identification and treatment could reduce mortality. A computer-assisted diagnosis (CAD) system to help physicians diagnose tumors is in great demand in ophthalmology. In recent years, deep learning has demonstrated promising outcomes in computer vision systems. This work proposes a CAD system for detecting various forms of orbital tumors using convolutional neural networks. The system has three stages: preprocessing, data augmentation and classification. The proposed system was evaluated on two datasets of magnetic resonance imaging (MRI) images containing 1404 MRI T1-weighted images and 1560 MRI T2-weighted images. The results have shown that the system is capable of detecting and classifying the tumor in each image type, and the recognition rate for the T1-weighted image is 98% and for the T2-weighted image is 97%.

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Imaging for Orbital Tumors;Advances in Ophthalmology and Optometry;2024-08

2. Estudo de Modelos baseados em Redes Neurais Profundas para a Classificação de Tumores Melanocíticos Conjuntivais;Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2024);2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3