Multivariable models including artificial neural network and M5P-tree to forecast the stress at the failure of alkali-activated concrete at ambient curing condition and various mixture proportions
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-022-07427-7.pdf
Reference109 articles.
1. van Deventer JS, Provis JL, Duxson P, Brice DG (2010) Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valor 1(1):145–155. https://doi.org/10.1007/s12649-010-9015-9
2. Mahasenan N, Smith S, Humphreys K (2003).The cement industry and global climate change: current and potential future cement industry CO2 emissions. In: Greenhouse gas control technologies-6th international conference. Elsevier, Pergamon, pp 995–1000. https://doi.org/10.1016/B978-008044276-1/50157-4
3. Guo X, Shi H, Dick WA (2010) Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement Concr Compos 32(2):142–147
4. Mejeoumov GG (2007) Improved cement quality and grinding efficiency by means of closed mill circuit modeling. Texas A&M University
5. Provis JL, Palomo A, Shi C (2015) Advances in understanding alkali-activated materials. Cem Concr Res 78:110–125
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimizing mechanical performance and flow characteristics of alkaline fly ash/rice husk ash composite backfill: Insights from multi-factor analysis and engineering optimization;Journal of Building Engineering;2024-10
2. Resistance to magnesium sulphate attack of binary and ternary cementless self-compacting alkali-activated mortar;Journal of Building Engineering;2024-10
3. A critical review on modeling and prediction on properties of fresh and hardened geopolymer composites;Journal of Building Engineering;2024-07
4. Performance Comparison of Artificial Neural Network and Random Forest Models for Predicting the Compressive Strength of Fibre-Reinforced GGBS-Based Geopolymer Concrete Composites;Materials Circular Economy;2024-06-28
5. A comparative analysis of simulation approaches for predicting permeability and compressive strength in pervious concrete;Low-carbon Materials and Green Construction;2024-06-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3