Breadth search strategies for finding minimal reducts: towards hardware implementation

Author:

Choromański Mateusz,Grześ Tomasz,Hońko Piotr

Abstract

AbstractAttribute reduction, being a complex problem in data mining, has attracted many researchers. The importance of this issue rises due to ever-growing data to be mined. Together with data growth, a need for speeding up computations increases. The contribution of this paper is twofold: (1) investigation of breadth search strategies for finding minimal reducts in order to emerge the most promising method for processing large data sets; (2) development and implementation of the first hardware approach to finding minimal reducts in order to speed up time-consuming computations. Experimental research showed that for software implementation blind breadth search strategy is in general faster than frequency-based breadth search strategy not only in finding all minimal reducts but also in finding one of them. An inverse situation was observed for hardware implementation. In the future work, the implemented tool is to be used as a fundamental module in a system to be built for processing large data sets.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shortest-length and coarsest-granularity constructs vs. reducts: An experimental evaluation;International Journal of Approximate Reasoning;2024-07

2. FPGA supported rough set reduct calculation for big datasets;Journal of Intelligent Information Systems;2022-07-11

3. Approaches for coarsest granularity based near-optimal reduct computation;Applied Intelligence;2022-06-06

4. Coarsest granularity-based optimal reduct using A* search;Granular Computing;2022-03-08

5. Two FPGA Devices in the Problem of Finding Minimal Reducts;Computer Information Systems and Industrial Management;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3