Multi-classification for EEG motor imagery signals using data evaluation-based auto-selected regularized FBCSP and convolutional neural network

Author:

An Yang,Lam Hak Keung,Ling Sai HoORCID

Abstract

AbstractIn recent years, there has been a renewal of interest in brain–computer interface (BCI). One of the BCI tasks is to classify the EEG motor imagery (MI). A great deal of effort has been made on MI classification. What seems to be lacking, however, is multiple MI classification. This paper develops a single-channel-based convolutional neural network to tackle multi-classification motor imagery tasks. For multi-classification, a single-channel learning strategy can extract effective information from each independent channel, making the information between adjacent channels not affect each other. A data evaluation method and a mutual information-based regularization parameters auto-selection algorithm are also proposed to generate effective spatial filters. The proposed method can be used to tackle the problem of an inaccurate mixed covariance matrix caused by fixed regularization parameters and invalid training data. To illustrate the merits of the proposed methods, we used the tenfold cross-validation accuracy and kappa as the evaluation measures to test two data sets. BCI4-2a and BCI3a data sets have four mental classes. For the BCI4-2a data set, the average accuracy is 79.01%, and the kappa is 0.7202 using data evaluation-based auto-selected filter bank regularized common spatial pattern voting (D-ACSP-V) and single-channel series convolutional neural network (SCS-CNN). Compared to traditional FBRCSP, the proposed method improved accuracy by 7.14% for the BCI4-2a data set. By using the BCI3a data set, the proposed method improved accuracy by 9.54% compared with traditional FBRCSP, the average accuracy of the proposed method is 83.70%, and the kappa is 0.7827.

Funder

University of Technology Sydney

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3