Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-020-05525-y.pdf
Reference67 articles.
1. Amer AA, El-Sokkary TM, Abdullah NI (2015) Thermal durability of OPC pastes admixed with nano iron oxide. HBRC J 11(2):299–305
2. Kırgız MS (2016) Strength gain mechanism for green mortar substituted marble powder and brick powder for Portland cement. Europ J Environ Civil Eng 20(sup1):s38–s63
3. Ashikhmen VA, Pronina LÉ (1986) Rheological properties of dispersed cement grouts. Power Technol Eng Formerly Hydrotech Construct 20(10):598–603
4. Rosquoët F, Alexis A, Khelidj A, Phelipot A (2003) Experimental study of cement grout: rheological behavior and sedimentation. Cem Concr Res 33(5):713–722
5. Kirgiz MS (2015) Strength gain mechanisms of blended-cements containing marble powder and brick powder. KSCE J Civil Eng 19(1):165–172
Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning models for estimating the compressive strength of rubberized concrete subjected to elevated temperature: Optimization and hyper-tuning;Sustainable Chemistry and Pharmacy;2024-12
2. Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete;Engineering Applications of Artificial Intelligence;2024-10
3. Effect of composite retarder on early properties of C12A7-CaSO4-cement composite materials;Construction and Building Materials;2024-09
4. Phosphate mine by-products as new cementitious binders for eco-mortars production: Experiments and machine learning approach;Journal of Building Engineering;2024-09
5. Machine learning prediction model integrating experimental study for compressive strength of carbon-nanotubes composites;Journal of Engineering Research;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3