1. Allen C, Balazevic I, Hospedales T (2021) Interpreting knowledge graph relation representation from word embeddings. In: International conference on learning representations, https://openreview.net/forum?id=gLWj29369lW
2. Balazevic I, Allen C, Hospedales T (2019) TuckER: tensor factorization for knowledge graph completion. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China, pp. 5185–5194, https://doi.org/10.18653/v1/D19-1522 https://aclanthology.org/D19-1522
3. Barbieri N, Bonchi F, Manco G (2014) Who to follow and why: link prediction with explanations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1266–1275
4. Bordes A, Usunier N, Garcia-Duran A, et al (2013) Translating embeddings for modeling multi-relational data. In: Burges C, Bottou L, Welling M, et al (eds) Advances in neural information processing systems, vol 26. Curran Associates, Inc., https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
5. Chandrahas , Sengupta T, Pragadeesh C, et al (2020) Inducing interpretability in knowledge graph embeddings. In: Proceedings of the 17th international conference on natural language processing (ICON). NLP Association of India (NLPAI), Indian Institute of Technology Patna, Patna, India, pp. 70–75, https://aclanthology.org/2020.icon-main.9