Automatic steel grades design for Jominy profile achievement through neural networks and genetic algorithms

Author:

Vannucci MarcoORCID,Colla ValentinaORCID

Abstract

AbstractThe paper proposes an approach to the design of the chemical composition of steel, which is based on neural networks and genetic algorithms and aims at achieving a desired hardenability behavior possibly matching other constraints related to the steel production. Hardenability is a mechanical feature of steel, which is extremely relevant for a wide range of steel applications and refers to the steel capability to improve its hardness following a heat treatment. In the proposed approach, a neural-network-based predictor of the so-called Jominy hardenability profile is exploited, and an optimization problem is formulated, where the optimization function allows taking into account both the desired accuracy in meeting the target Jominy profile and other constraint. The optimization is performed through genetic algorithms. Numerical results are presented and discussed, showing the efficiency of the proposed approach together with its flexibility and easy customization with respect to the user demands and production objectives.

Funder

Scuola Superiore Sant'Anna

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3